
Diskrete Mathematik
Finale: Repetition, Exam Prep & Survival Guide (Woche 13)

Shivram Sambhus (cs.shivi.io)

ETH Zürich

Willkommen zum Finale!

▶ Thema: Der grosse Rückblick (Kapitel 1-6).
▶ Ziel: Fit für die Prüfung (6.0 Mission).
▶ Agenda:

1. The Big Picture: Alle Konzepte im
Schnelldurchlauf.

2. Strategy: Schritt-für-Schritt Strategien.
3. Topics: Aufgaben nach Typ sortiert (3-4 Beispiele

pro Typ).
4. Hard(er) Mode: Härtere (mid-hard) problems.
5. Survival Guide: How to survive BP1.

Teil 1: The Big Picture (TL;DR)

Kapitel 1 & 2: Das Fundament

Worum geht’s? Mathematische Strenge, Logik und Beweismethoden.
▶ Aussagenlogik: Negation, Implikation (𝐴 → 𝐵 ≡ ¬𝐴 ∨ 𝐵), Kontraposition.
▶ Beweismethoden:

▶ Direkt: Definitionen einsetzen.
▶ Widerspruch (Reductio ad absurdum): Nehme ¬𝐴 an, leite Widerspruch (⊥) her.
▶ Schubfachprinzip (Pigeonhole): 𝑛 + 1 Tauben, 𝑛 Fächer ⟹ Ein Fach voll.

▶ Induktion: Der Goldstandard für ℕ.
1. Basis: Zeige für 𝑛0.

2. Annahme (IA): Gelte für 𝑛.

3. Schritt (IS): Zeige für 𝑛 + 1 unter Verwendung der IA.

Kapitel 3: Die Sprache der Mathematik
Worum geht’s? Mengen, Relationen und wie wir Dinge zählen.

▶ Mengen: 𝒫(𝐴) (Potenzmenge), |𝐴| < |𝒫(𝐴)|.
▶ Relationen:

▶ Äquivalenzrelation: Reflexiv, Symmetrisch, Transitiv. → Partitionen.
▶ Ordnungsrelation (Poset): Reflexiv, Antisymmetrisch, Transitiv. → Hasse-Diagramme.

▶ Funktionen:
▶ Injektiv: Verschiedene Inputs → Verschiedene Outputs. (𝑓(𝑥) = 𝑓(𝑦) ⟹ 𝑥 = 𝑦)
▶ Surjektiv: Alles wird getroffen. (Gleichung 𝑓(𝑥) = 𝑦 immer lösbar)
▶ Bijektiv: Beides ⟹ Umkehrfunktion existiert.

▶ Abzählbarkeit:
▶ Abzählbar: ℕ, ℤ, ℚ.
▶ überabzählbar: ℝ, {0, 1}ℕ. Diagonalargument!

Kapitel 4: Zahlentheorie

Worum geht’s? Die Struktur von ℤ und Kryptographie.
▶ Euklidischer Algorithmus:

▶ gcd(𝑎, 𝑏) berechnen.
▶ Erweiterter Euklid: gcd(𝑎, 𝑏) = 𝑠𝑎 + 𝑡𝑏. (Wichtig für Inverse!)

▶ Modulare Arithmetik:
▶ Rechnen in ℤ𝑛.
▶ Inverses 𝑎−1 existiert ⟺ gcd(𝑎, 𝑛) = 1.

▶ Die grossen Theoreme:
▶ Kleiner Fermat: 𝑎𝑝−1 ≡ 1 (mod 𝑝) (für Primzahl 𝑝).
▶ Satz von Euler: 𝑎𝜙(𝑛) ≡ 1 (mod 𝑛). (𝜙(𝑛) = Anzahl teilerfremder Zahlen).
▶ CRT (Chinesischer Restsatz): Kongrünzsysteme lösen (wenn Moduli teilerfremd).

Kapitel 5: Algebra

Worum geht’s? Abstrakte Strukturen und Symmetrien.
▶ Gruppen (𝐺, ⋆): Abgeschlossen, Assoziativ, Neutrales 𝑒, Inverse.

▶ Ordnung: Kleinste 𝑘 mit 𝑔𝑘 = 𝑒. Teilt immer |𝐺| (Lagrange).
▶ Zyklisch: Ein Generator erzeugt alles.
▶ Homomorphismus: 𝜙(𝑎 ⋆ 𝑏) = 𝜙(𝑎) ∘ 𝜙(𝑏). (Strukturerhaltend).

▶ Ringe & Körper:
▶ Ring: Gruppe bzgl +, Monoid bzgl ⋅, Distributiv.
▶ Körper (Field): Ring wo fast alles (ausser 0) multiplikativ invertierbar ist. (ℚ, ℝ, ℤ𝑝).

▶ Polynome:
▶ Rechnen mit 𝑃(𝑥) in Körpern. Irreduzibilitut = “Primzahlen der Polynome”.

Kapitel 6: Logik-Kalküle
Worum geht’s? Automatisiertes Schliessen und Grenzen der Beweisbarkeit.

▶ Aussagenlogik:
▶ Erfüllbarkeit (SAT) vs. Allgemeingultigkeit (Tautologie).
▶ CNF (Konjunktive Normalform) & DNF.

▶ Resolution:
▶ Ein korrekter und vollstundiger Kalkül für Unerfüllbarkeit.
▶ Regel: {L, A}, {¬L, B} ⊢ {A, B}. Ziel: Leere Klausel �.

▶ Prädikatenlogik:
▶ Quantoren ∀, ∃.
▶ PNF (Prenex Normal Form): Alle Quantoren nach vorne.
▶ Skolemisierung: ∃ eliminieren durch Funktionen.
▶ Theorem 6.12: Die Mutter aller Paradoxa (Russell, Cantor, Halteproblem).

Teil 2: Topic Buckets (Aufgaben nach Typ)

Bucket A: Induktion & Beweise

A1. Induktion

Aufgabe: Zeige mittels vollständiger Induktion: Für alle 𝑛 ≥ 1 gilt: 6 ∣ (𝑛3 − 𝑛).

Lösung A1

▶ Basis (𝑛 = 1): 13 − 1 = 0, 6 ∣ 0. ✓
▶ Schritt (𝑛 → 𝑛 + 1): (𝑛 + 1)3 − (𝑛 + 1) = 𝑛3 + 3𝑛2 + 3𝑛 + 1 − 𝑛 − 1

= (𝑛3 − 𝑛) + 3𝑛(𝑛 + 1).
▶ Erster Term (𝑛3 − 𝑛) ist durch 6 teilbar (IA).
▶ Zweiter Term 3𝑛(𝑛 + 1):

▶ 𝑛(𝑛 + 1) ist Produkt zweier aufeinanderfolgender Zahlen ⟹ gerade (∣ 2).
▶ Also ist 3 ⋅ 𝑛(𝑛 + 1) teilbar durch 3 ⋅ 2 = 6.

▶ Summe zweier durch 6 teilbarer Zahlen ist teilbar durch 6. �

A2. Pigeonhole Principle

Aufgabe: Seien 𝑎1, … , 𝑎𝑛 ganze Zahlen. Beweise: Es gibt eine Teilfolge 𝑎𝑖, … , 𝑎𝑗
(1 ≤ 𝑖 ≤ 𝑗 ≤ 𝑛), deren Summe durch 𝑛 teilbar ist.

Hinweis: Betrachte die Partialsummen 𝑠𝑘 = 𝑎1 + ⋯ + 𝑎𝑘.

Lösung A2

Strategie: Schubfachprinzip (Pigeonhole Principle)

1. Definitionen:
▶ Tauben: Die 𝑛 Partialsummen 𝑠𝑘 = 𝑎1 + ⋯ + 𝑎𝑘 für 𝑘 = 1, … , 𝑛.
▶ Fächer: Die möglichen Reste modulo 𝑛: {0, 1, … , 𝑛 − 1}.

2. Fallunterscheidung:
▶ Fall 1: Einer der Reste ist 0 (d.h. 𝑠𝑘 ≡ 0 (mod 𝑛)).

▶ Dann ist die Summe 𝑠𝑘 bereits durch 𝑛 teilbar. Fertig.
▶ Fall 2: Keiner der Reste ist 0.

▶ Verfügbare Fächer: {1, … , 𝑛 − 1} (Anzahl: 𝑛 − 1).
▶ Anzahl Tauben: 𝑛.
▶ PHP: Da 𝑛 > 𝑛 − 1, müssen zwei verschiedene Summen 𝑠𝑖 und 𝑠𝑗 (𝑖 < 𝑗) im gleichen Fach

landen.
3. Schlussfolgerung:

▶ 𝑠𝑗 ≡ 𝑠𝑖 (mod 𝑛) ⟹ 𝑠𝑗 − 𝑠𝑖 ≡ 0 (mod 𝑛).
▶ Die Differenz ist 𝑠𝑗 − 𝑠𝑖 = 𝑎𝑖+1 + ⋯ + 𝑎𝑗.
▶ Diese Teilsumme ist durch 𝑛 teilbar. �

A3. Summenformel

Aufgabe: Sei 𝑆 = {1, 2, … , 9}. Beweise: Jede Teilmenge 𝐴 ⊆ 𝑆 mit |𝐴| = 6 enthält
mindestens zwei verschiedene Elemente 𝑥, 𝑦 mit 𝑥 + 𝑦 = 10.

Lösung A3
Strategie: Schubfachprinzip mit Partitionen

1. Fächer (Partitionierung von 𝑆): Wir bilden Paare, die sich zu 10 addieren:
▶ 𝑃1 = {1, 9}
▶ 𝑃2 = {2, 8}
▶ 𝑃3 = {3, 7}
▶ 𝑃4 = {4, 6}
▶ 𝑅 = {5} (Rest) Insgesamt gibt es 5 “Fächer” (4 Paare + 1 Einzelgänger).

2. Tauben: Wir wählen 6 Elemente aus 𝑆 (unsere Menge 𝐴).

3. Anwendung PHP:
▶ Selbst im “schlimmsten” Fall wählen wir die 5 als Erstes.
▶ Es verbleiben 5 weitere Elemente, die wir auf die 4 Paare 𝑃1, … , 𝑃4 verteilen müssen.
▶ Nach PHP muss mindestens ein Paar 𝑃𝑘 vollständig in 𝐴 enthalten sein (da 5 > 4).

4. Ergebnis:
▶ Ein vollständig gewähltes Paar {𝑥, 𝑦} erfüllt 𝑥 + 𝑦 = 10. �

Bucket B: Relationen & Mengen

B1. Äquivalenzrelation

Aufgabe: Sei 𝜌 eine reflexive Relation auf 𝐴 mit der Eigenschaft:

𝑎𝜌𝑏 ∧ 𝑏𝜌𝑐 ⟹ 𝑐𝜌𝑎

Beweise, dass 𝜌 eine Äquivalenzrelation ist.

Lösung B1

Zu zeigen: Reflexiv, Symmetrisch, Transitiv.

1. Reflexiv: Gegeben in der Aufgabenstellung. ✓

2. Symmetrisch: (𝑎𝜌𝑏 ⟹ 𝑏𝜌𝑎)
▶ Wir wissen: 𝑎𝜌𝑎 (Reflexivität).
▶ Setze in der Bedingung 𝑏 = 𝑎 und 𝑐 = 𝑏: 𝑎𝜌𝑎 ∧ 𝑎𝜌𝑏 ⟹ 𝑏𝜌𝑎.
▶ Da 𝑎𝜌𝑎 wahr ist, vereinfacht sich dies zu 𝑎𝜌𝑏 ⟹ 𝑏𝜌𝑎. ✓

3. Transitiv: (𝑎𝜌𝑏 ∧ 𝑏𝜌𝑐 ⟹ 𝑎𝜌𝑐)
▶ Gegeben ist: 𝑎𝜌𝑏 ∧ 𝑏𝜌𝑐 ⟹ 𝑐𝜌𝑎.
▶ Aus (2) wissen wir, dass 𝜌 symmetrisch ist.
▶ Also 𝑐𝜌𝑎 ⟹ 𝑎𝜌𝑐.
▶ Kombiniert: 𝑎𝜌𝑏 ∧ 𝑏𝜌𝑐 ⟹ 𝑐𝜌𝑎 ⟹ 𝑎𝜌𝑐. ✓

B2. Komposition von Relationen

Aufgabe: Seien 𝜌 und 𝜎 zwei Äquivalenzrelationen auf einer Menge 𝐴. Beweise: Wenn
𝜌 ∘ 𝜎 = 𝜎 ∘ 𝜌, dann ist 𝜌 ∘ 𝜎 eine Äquivalenzrelation. (Zeige hier nur die Symmetrie).

Lösung B2

Symmetrie: Zu zeigen: Wenn (𝑥, 𝑦) ∈ 𝜌 ∘ 𝜎, dann (𝑦, 𝑥) ∈ 𝜌 ∘ 𝜎.
▶ Sei (𝑥, 𝑦) ∈ 𝜌 ∘ 𝜎.
▶ Da 𝜌 ∘ 𝜎 = 𝜎 ∘ 𝜌, gilt (𝑥, 𝑦) ∈ 𝜎 ∘ 𝜌.
▶ Das heisst, es existiert ein 𝑧, sodass (𝑥, 𝑧) ∈ 𝜎 und (𝑧, 𝑦) ∈ 𝜌.
▶ Da 𝜎 und 𝜌 symmetrisch sind (Äquivalenzrelationen), gilt (𝑧, 𝑥) ∈ 𝜎 und (𝑦, 𝑧) ∈ 𝜌.
▶ Also (𝑦, 𝑧) ∈ 𝜌 und (𝑧, 𝑥) ∈ 𝜎 ⟹ (𝑦, 𝑥) ∈ 𝜌 ∘ 𝜎. ✓

B3. Partielle Ordnung

Aufgabe: Betrachte ⪯ auf ℕ2: (𝑎, 𝑏) ⪯ (𝑐, 𝑑) ⟺ (𝑎, 𝑏) = (𝑐, 𝑑) ∨ (𝑎 < 𝑐 ∧ 𝑎 + 𝑑 ≤ 𝑏 + 𝑐).
Zeige: ⪯ ist eine partielle Ordnung (Antisymmetrie).

Lösung B3

Antisymmetrie: Sei (𝑎, 𝑏) ⪯ (𝑐, 𝑑) und (𝑐, 𝑑) ⪯ (𝑎, 𝑏). Zu zeigen: (𝑎, 𝑏) = (𝑐, 𝑑).
▶ Annahme (𝑎, 𝑏) ≠ (𝑐, 𝑑).
▶ Dann gilt aus der Definition:

1. 𝑎 < 𝑐 ∧ 𝑎 + 𝑑 ≤ 𝑏 + 𝑐

2. 𝑐 < 𝑎 ∧ 𝑐 + 𝑏 ≤ 𝑑 + 𝑎

▶ 𝑎 < 𝑐 und 𝑐 < 𝑎 ist ein direkter Widerspruch!
▶ Daher muss die Annahme falsch sein.
▶ Es bleibt nur (𝑎, 𝑏) = (𝑐, 𝑑). ✓

Bucket C: Zahlentheorie

C1. CRT-System

Aufgabe: Finde alle Lösungen 𝑥 mit 0 ≤ 𝑥 < 180 für:

𝑥 ≡ 2 (mod 15)

𝑥 ≡ 8 (mod 12)

Lösung C1

Strategie: Zerlegen in Primzahlpotenzen & CRT

1. Analyse der Moduli: 15 = 3 ⋅ 5 und 12 = 3 ⋅ 4. Da gcd(15, 12) = 3 ≠ 1, können wir CRT
nicht direkt anwenden.

2. Aufspalten der Gleichungen:

▶ 𝑥 ≡ 2 (mod 15) ⟺ {𝑥 ≡ 2 (mod 3)
𝑥 ≡ 2 (mod 5)

▶ 𝑥 ≡ 8 (mod 12) ⟺ {𝑥 ≡ 8 ≡ 2 (mod 3)
𝑥 ≡ 8 ≡ 0 (mod 4)

3. Konsistenzprüfung: Beide Gleichungen fordern 𝑥 ≡ 2 (mod 3). Das ist konsistent! Wir
fassen das System zusammen zu:
3.1 𝑥 ≡ 0 (mod 4)
3.2 𝑥 ≡ 2 (mod 5)
3.3 𝑥 ≡ 2 (mod 3)

4. Schrittweises Lösen:
▶ Schritt A (Mod 4 & 5): Suche Zahl, die durch 4 teilbar ist und Rest 2 bei Division durch 5

lässt. Kandidaten (Vielfache von 4): 0, 4, 8, 12, … 12 ≡ 2 (mod 5). ✓ ⟹ 𝑥 ≡ 12
(mod 20) (da kgV(4, 5) = 20).

▶ Schritt B (Mod 20 & 3): Wir haben 𝑥 = 20𝑘 + 12. Einsetzen in 𝑥 ≡ 2 (mod 3):
20𝑘 + 12 ≡ 2 (mod 3) 2𝑘 + 0 ≡ 2 (mod 3) 2𝑘 ≡ 2 (mod 3) ⟹ 𝑘 ≡ 1 (mod 3).

5. Gesamtlösung: Setze 𝑘 = 3𝑗 + 1 in 𝑥 = 20𝑘 + 12 ein:
𝑥 = 20(3𝑗 + 1) + 12 = 60𝑗 + 20 + 12 = 60𝑗 + 32. ⟹ 𝑥 ≡ 32 (mod 60).

Lösungen in [0, 180): 32, 92, 152.

C2. RSA Key Calculation

Aufgabe: Gegeben RSA Public Key (𝑛, 𝑒) = (77, 7). Berechne den Secret Key 𝑑.

Lösung C2

1. Parameter bestimmen:
▶ 𝑛 = 77 = 7 ⋅ 11 ⟹ 𝑝 = 7, 𝑞 = 11.
▶ 𝜙(𝑛) = (𝑝 − 1)(𝑞 − 1) = 6 ⋅ 10 = 60.

2. Ziel: Finde 𝑑 mit 𝑒 ⋅ 𝑑 ≡ 1 (mod 𝜙(𝑛)), also 7𝑑 ≡ 1 (mod 60).

3. Erweiterter Euklidischer Algorithmus (EEA): Wir stellen 1 als Linearkombination von 60
und 7 dar.

Gleichung Umformung
60 = 8 ⋅ 7 + 4 4 = 60 − 8 ⋅ 7
7 = 1 ⋅ 4 + 3 3 = 7 − 1 ⋅ 4
4 = 1 ⋅ 3 + 1 1 = 4 − 1 ⋅ 3

▶ Rückwärts einsetzen:
1 = 4 − 1 ⋅ 3

= 4 − 1 ⋅ (7 − 1 ⋅ 4)
= 2 ⋅ 4 − 1 ⋅ 7
= 2 ⋅ (60 − 8 ⋅ 7) − 1 ⋅ 7
= 2 ⋅ 60 − 16 ⋅ 7 − 1 ⋅ 7
= 2 ⋅ 60 − 17 ⋅ 7

4. Ergebnis: −17 ⋅ 7 ≡ 1 (mod 60). 𝑑 ≡ −17 ≡ 43 (mod 60).

Antwort: 𝑑 = 43.

C3. Teilbarkeits-Beweis

Aufgabe: Beweise: ∀𝑎, 𝑏, 𝑐 ∈ ℤ ∖ {0}: Wenn 𝑎 ∣ 𝑏𝑐 und gcd(𝑎, 𝑏) = 1, dann 𝑎 ∣ 𝑐.

Lösung C3

Zu zeigen: 𝑎 ∣ 𝑏𝑐 ∧ gcd(𝑎, 𝑏) = 1 ⟹ 𝑎 ∣ 𝑐.

1. Bézout’s Identity: gcd(𝑎, 𝑏) = 1 ⟹ ∃𝑢, 𝑣 ∈ ℤ ∶ 𝑢𝑎 + 𝑣𝑏 = 1.

2. Multipliziere mit 𝑐: 𝑐(𝑢𝑎 + 𝑣𝑏) = 𝑐 ⟹ 𝑢𝑎𝑐 + 𝑣𝑏𝑐 = 𝑐 (0).

3. Teilbarkeit prüfen:
▶ 𝑎 ∣ 𝑢𝑎𝑐 ist klar, da 𝑎 ein Faktor ist. (1)
▶ 𝑎 ∣ 𝑣𝑏𝑐 gilt, da 𝑎 ∣ 𝑏𝑐 (Voraussetzung). (2)

4. Kombinieren:
▶ Aus (1) und (2) folgt: 𝑎 teilt die Summe (𝑢𝑎𝑐 + 𝑣𝑏𝑐).
▶ Wegen (0) ist die Summe gleich 𝑐.
▶ ⟹ 𝑎 ∣ 𝑐. �

Bucket D: Algebra

D1. Injektiver Homomorphismus

Aufgabe: Existiert ein injektiver Homomorphismus 𝜓 ∶ ℤ∗
14 → ℤ14?

Lösung D1

Strategie: Vergleich der Elementordnungen

1. Ordnung der Gruppe ℤ∗
14:

▶ ℤ∗
14 = {𝑥 ∈ ℤ14 ∣ gcd(𝑥, 14) = 1} = {1, 3, 5, 9, 11, 13}.

▶ Die Gruppenordnung ist |ℤ∗
14| = 𝜙(14) = 𝜙(2)𝜙(7) = 1 ⋅ 6 = 6.

▶ Das Element 3 ∈ ℤ∗
14 hat Ordnung 6 (31 = 3, 32 = 9, 33 = 27 ≡ 13, … , 36 ≡ 1).

2. Eigenschaft von Homomorphismen:
▶ Ein injektiver Homomorphismus 𝜓 muss die Ordnung von Elementen erhalten:

ord(𝜓(𝑥)) = ord(𝑥).
▶ Also müsste 𝜓(3) in der Zielgruppe (ℤ14, +) ein Element der Ordnung 6 sein.

3. Analyse der Zielgruppe (ℤ14, +):
▶ Die Ordnung eines Elements 𝑦 ∈ ℤ14 ist 𝑘 = 14

gcd(𝑦,14) .
▶ Dies ist immer ein Teiler von 14.
▶ 6 ist kein Teiler von 14.

4. Fazit: Es gibt kein Element der Ordnung 6 in ℤ14. Daher kann kein solcher
Homomorphismus existieren.

D2. Polynome & Körper

Aufgabe: Bestimme alle Nullstellen von 2𝑥2 + 3𝑥 + 1 in ℤ5.

Lösung D2

Strategie: Einsetzen aller Elemente (Brute Force)

Da der Körper ℤ5 = {0, 1, 2, 3, 4} klein ist, testen wir alle Werte:

𝑥 2𝑥2 + 3𝑥 + 1 (mod 5) Ergebnis
0 0 + 0 + 1 = 1 ≠ 0
1 2(1) + 3(1) + 1 = 6 ≡ 1 ≠ 0
2 2(4) + 3(2) + 1 =

8 + 6 + 1 = 15 ≡ 0
Nullstelle

3 2(9) + 3(3) + 1 =
18 + 9 + 1 = 28 ≡ 3

≠ 0

4 2(16) + 3(4) + 1 =
32 + 12 + 1 = 45 ≡ 0

Nullstelle

Antwort: Die Nullstellen sind 𝑥1 = 2 und 𝑥2 = 4.

D3. Isomorphie-Check

Aufgabe: Beweise, dass ℤ∗
12 und ℤ4 nicht isomorph sind.

Lösung D3

Strategie: Struktureller Vergleich (Zyklizität)

1. Gruppe 1: (ℤ4, +)
▶ Elemente: {0, 1, 2, 3}.
▶ Das Element 1 ist ein Generator, da ⟨1⟩ = {1, 2, 3, 0} = ℤ4.
▶ ⟹ ℤ4 ist zyklisch.

2. Gruppe 2: (ℤ∗
12, ⋅)

▶ Elemente: {1, 5, 7, 11}. (Ordnung 4).
▶ Wir prüfen die Ordnung aller Elemente:

▶ 11 = 1 (Ordnung 1)
▶ 52 = 25 ≡ 1 (Ordnung 2)
▶ 72 = 49 ≡ 1 (Ordnung 2)
▶ 112 = 121 ≡ 1 (Ordnung 2)

▶ Es gibt kein Element der Ordnung 4.
▶ ⟹ ℤ∗

12 ist nicht zyklisch (isomorph zur Kleinschen Vierergruppe 𝑉4).
3. Fazit: Da eine Gruppe zyklisch ist und die andere nicht, können sie nicht isomorph sein. �

Bucket E: Logik

E1. Prenex Normal Form

Aufgabe: Finde eine äquivalente Formel in PNF für:

¬∀𝑥(𝑃(𝑥) ∨ ¬𝑄(𝑦)) ∧ ∃𝑦(𝑃(𝑥) ∨ 𝑄(𝑦))

Lösung E1

Strategie: Schrittweise Transformation

1. Variablen bereinigen (Bound Variable Renaming): Wir zerlegen die Formel in zwei Teile:

¬∀𝑥(𝑃(𝑥) ∨ ¬𝑄(𝑦))⏟⏟⏟⏟⏟⏟⏟⏟⏟
𝐿

∧ ∃𝑦(𝑃(𝑥) ∨ 𝑄(𝑦))⏟⏟⏟⏟⏟⏟⏟
𝑅

▶ In 𝐿 ist 𝑥 gebunden. Wir benennen es um zu 𝑢: 𝐿′ = 𝐿[𝑥/𝑢] = ¬∀𝑢(𝑃(𝑢) ∨ ¬𝑄(𝑦)).
▶ In 𝑅 ist 𝑦 gebunden. Wir benennen es um zu 𝑣: 𝑅′ = 𝑅[𝑦/𝑣] = ∃𝑣(𝑃(𝑥) ∨ 𝑄(𝑣)).

Neue Formel: ¬∀𝑢(𝑃(𝑢) ∨ ¬𝑄(𝑦)) ∧ ∃𝑣(𝑃(𝑥) ∨ 𝑄(𝑣)).

2. Negation nach innen ziehen:
▶ ¬∀𝑢(…) ≡ ∃𝑢¬(…)
▶ ∃𝑢¬(𝑃(𝑢) ∨ ¬𝑄(𝑦)) ∧ ∃𝑣(𝑃(𝑥) ∨ 𝑄(𝑣))
▶ De Morgan: ∃𝑢(¬𝑃(𝑢) ∧ 𝑄(𝑦)) ∧ ∃𝑣(𝑃(𝑥) ∨ 𝑄(𝑣))

3. Quantoren nach vorne ziehen (Prenexing):
▶ Da 𝑢 nicht im zweiten Teil und 𝑣 nicht im ersten Teil vorkommt, können wir sie ganz nach

vorne ziehen.
▶ ∃𝑢∃𝑣((¬𝑃(𝑢) ∧ 𝑄(𝑦)) ∧ (𝑃(𝑥) ∨ 𝑄(𝑣)))

E2. Modell finden

Aufgabe: Finde ein Modell für die Formel ∀𝑥𝑃(𝑓(𝑥), 𝑦) der Prädikatenlogik.

Lösung E2

Strategie: Konstruktion eines minimalen Modells

Wir definieren eine Struktur 𝒜 = (𝑈, 𝑃 𝒜, 𝑓𝒜, 𝑦𝒜), die die Formel wahr macht.

1. Universum: Wähle 𝑈 = {0} (ein einziges Element reicht oft).
2. Konstante 𝑦: Setze 𝑦𝒜 = 0.
3. Funktion 𝑓 : Setze 𝑓𝒜(0) = 0.
4. Prädikat 𝑃 :

▶ Die Formel verlangt: Für alle 𝑥 ∈ 𝑈 gilt 𝑃(𝑓(𝑥), 𝑦).
▶ Hier: 𝑃(𝑓(0), 0) ⟹ 𝑃(0, 0).
▶ Wir definieren 𝑃 𝒜 = {(0, 0)} (d.h. 𝑃 ist immer wahr).

Überprüfung: ∀𝑥 ∈ {0} ∶ 𝑃 𝒜(𝑓𝒜(𝑥), 𝑦𝒜) ⟺ 𝑃 𝒜(0, 0) ⟺ Wahr. ✓

Teil 4: Hard(er) Mode

H1: Isomorphie

Aufgabe: Sind (ℤ4, +) und 𝑉4 = ℤ2 × ℤ2 isomorph?

Lösung H1

Antwort: Nein.

Begründung über Elementordnungen:

1. Gruppe (ℤ4, +):
▶ Elemente: {0, 1, 2, 3}.
▶ Ordnung von 1: 1 → 2 → 3 → 0. (Ordnung 4).
▶ Ordnung von 3: 3 → 2 → 1 → 0. (Ordnung 4).
▶ Es gibt Elemente der Ordnung 4.

2. Gruppe 𝑉4 = ℤ2 × ℤ2:
▶ Elemente: {(0, 0), (0, 1), (1, 0), (1, 1)}.
▶ Addition ist komponentenweise modulo 2.
▶ Für jedes Element 𝑥 ∈ 𝑉4 gilt 𝑥 + 𝑥 = (0, 0).
▶ Das bedeutet: Jedes Element (außer dem neutralen) hat Ordnung 2.

3. Schlussfolgerung: Ein Isomorphismus müsste die Ordnung von Elementen erhalten. Da ℤ4
Elemente der Ordnung 4 hat, 𝑉4 aber nicht, können sie nicht isomorph sein.

H2: Zahlentheorie Beweis

Aufgabe: Seien 𝑎, 𝑏, 𝑐, 𝑑 ∈ ℕ≥1. Beweise: 𝑎𝑏 = 𝑐𝑑 ⟹ 𝑎 + 𝑏 + 𝑐 + 𝑑 ist nicht prim.

Lösung H2
Strategie: Parametrisierung der Gleichung 𝑎𝑏 = 𝑐𝑑

1. Setze: 𝑔 = gcd(𝑎, 𝑐).
▶ Wir können schreiben: 𝑎 = 𝑔 ⋅ 𝑥 und 𝑐 = 𝑔 ⋅ 𝑦, wobei gcd(𝑥, 𝑦) = 1.

2. Einsetzen in 𝑎𝑏 = 𝑐𝑑:
▶ (𝑔𝑥)𝑏 = (𝑔𝑦)𝑑 ⟹ 𝑥𝑏 = 𝑦𝑑.
▶ Da gcd(𝑥, 𝑦) = 1, muss 𝑥 ein Teiler von 𝑑 sein (𝑥 ∣ 𝑑).
▶ Also existiert ein 𝑧 ∈ ℕ, sodass 𝑑 = 𝑥 ⋅ 𝑧.
▶ Daraus folgt auch 𝑏 = 𝑦 ⋅ 𝑧.

3. Summe berechnen:
▶ 𝑎 + 𝑏 + 𝑐 + 𝑑 = 𝑔𝑥 + 𝑦𝑧 + 𝑔𝑦 + 𝑥𝑧.

4. Faktorisieren:
▶ Gruppiere Terme: 𝑔(𝑥 + 𝑦) + 𝑧(𝑦 + 𝑥).
▶ Klammere aus: (𝑔 + 𝑧)(𝑥 + 𝑦).

5. Prüfung auf Primzahl:
▶ Da 𝑎, 𝑏, 𝑐, 𝑑 ≥ 1, sind 𝑔, 𝑥, 𝑦, 𝑧 ≥ 1.
▶ Damit sind beide Faktoren (𝑔 + 𝑧) ≥ 2 und (𝑥 + 𝑦) ≥ 2.
▶ Eine Zahl, die in zwei Faktoren > 1 zerlegt werden kann, ist zusammengesetzt (nicht prim).

�

H3: Satz von Cantor

Aufgabe: Beweise |𝒫(𝐴)| > |𝐴| für jede Menge 𝐴.

Lösung H3
Beweis durch Widerspruch (Diagonalargument):

1. Annahme: Es existiert eine Surjektion 𝑓 ∶ 𝐴 → 𝒫(𝐴). (D.h. jedes Element der
Potenzmenge wird von 𝑓 getroffen).

2. Konstruktion der “bösen” Menge 𝐷: Wir definieren 𝐷 = {𝑥 ∈ 𝐴 ∣ 𝑥 ∉ 𝑓(𝑥)}. (Dies ist
die Menge aller Elemente, die nicht in ihrem eigenen Bild enthalten sind). Da 𝐷 ⊆ 𝐴, ist
𝐷 ∈ 𝒫(𝐴).

3. Der Widerspruch:
▶ Da 𝑓 surjektiv ist, muss es ein Urbild 𝑎 ∈ 𝐴 geben mit 𝑓(𝑎) = 𝐷.
▶ Frage: Ist 𝑎 ∈ 𝐷?
▶ Fall 1: 𝑎 ∈ 𝐷. ⟹ Nach Def. von 𝐷 gilt 𝑎 ∉ 𝑓(𝑎). ⟹ Da 𝑓(𝑎) = 𝐷, heisst das 𝑎 ∉ 𝐷.

(Widerspruch!)
▶ Fall 2: 𝑎 ∉ 𝐷. ⟹ Nach Def. von 𝐷 gilt 𝑎 ∈ 𝑓(𝑎). ⟹ Da 𝑓(𝑎) = 𝐷, heisst das 𝑎 ∈ 𝐷.

(Widerspruch!)

4. Fazit: Die Annahme war falsch. Es gibt keine Surjektion. Da |𝐴| ≤ |𝒫(𝐴)| trivial ist, folgt
|𝐴| < |𝒫(𝐴)|. �

H4: Zigzag Funktion

Aufgabe: Eine Funktion 𝑓 ∶ ℕ → ℕ heisst “Zigzag”, wenn sie immer abwechselnd
grösser/kleiner wird (z.B. 𝑓(0) < 𝑓(1) > 𝑓(2) < 𝑓(3)…). Ist die Menge aller Zigzag-Funktionen
abzählbar?

Lösung H4

Antwort: Nein, überabzählbar.

Strategie: Injektion von {0, 1}ℕ (Menge aller Binärfolgen) Wir zeigen, dass wir jede
unendliche Binärfolge 𝑏 = (𝑏0, 𝑏1, 𝑏2, …) eindeutig in eine Zigzag-Funktion kodieren können. Da
die Menge der Binärfolgen überabzählbar ist (Cantor), muss auch die Menge der
Zigzag-Funktionen überabzählbar sein.

1. Konstruktion: Wir definieren 𝑓𝑏(𝑛) rekursiv, sodass die Schrittweite |𝑓(𝑛) − 𝑓(𝑛 − 1)| das
Bit 𝑏𝑛−1 kodiert.

▶ Kodierung:
▶ Bit 0 → Schrittweite 1.
▶ Bit 1 → Schrittweite 2.

▶ Zigzag-Bedingung:
▶ 𝑛 ungerade (1, 3, …): Wir müssen hoch (𝑓(𝑛) > 𝑓(𝑛 − 1)).
▶ 𝑛 gerade (2, 4, …): Wir müssen runter (𝑓(𝑛) < 𝑓(𝑛 − 1)).

2. Beispiel: Sei die Folge 𝑏 = (0, 1, 0, …). Startwert 𝑓(0) = 10.
▶ 𝑛 = 1 (Bit 𝑏0 = 0): Wir müssen hoch.

▶ Bit 0 ⟹ Schrittweite 1.
▶ 𝑓(1) = 𝑓(0) + 1 = 11.

▶ 𝑛 = 2 (Bit 𝑏1 = 1): Wir müssen runter.
▶ Bit 1 ⟹ Schrittweite 2.
▶ 𝑓(2) = 𝑓(1) − 2 = 9.

▶ 𝑛 = 3 (Bit 𝑏2 = 0): Wir müssen hoch.
▶ Bit 0 ⟹ Schrittweite 1.
▶ 𝑓(3) = 𝑓(2) + 1 = 10.

Die Funktion ist 10, 11, 9, 10, … (Zigzag erfüllt).

3. Eindeutigkeit (Injektivität): Aus der Funktion können wir die Folge 𝑏 rekonstruieren:
𝑏𝑛−1 = |𝑓(𝑛) − 𝑓(𝑛 − 1)| − 1. Unterschiedliche Folgen erzeugen unterschiedliche Funktionen. �

H5: Logik Folgerung

Aufgabe: Beweise oder widerlege: (∀𝑥𝐹) ∨ 𝐺 ⊧ ∀𝑥(𝐹 ∨ 𝐺).

Lösung H5

Beweis: Es gilt.

Wir müssen zeigen: Jedes Modell 𝒜, das die Prämisse (∀𝑥𝐹) ∨ 𝐺 wahr macht, macht auch die
Konklusion ∀𝑥(𝐹 ∨ 𝐺) wahr.

Sei 𝒜 ein beliebiges Modell mit 𝒜 ⊧ (∀𝑥𝐹) ∨ 𝐺. Das bedeutet, mindestens einer der beiden
Teile ist wahr:

1. Fall 1: 𝒜 ⊧ 𝐺.
▶ Dann ist 𝐺 wahr (unabhängig von 𝑥).
▶ Damit ist auch die Disjunktion (𝐹 ∨ 𝐺) für jedes 𝑥 wahr.
▶ Also gilt ∀𝑥(𝐹 ∨ 𝐺).

2. Fall 2: 𝒜 ⊧ ∀𝑥𝐹 .
▶ Das bedeutet: Für alle 𝑑 ∈ 𝑈 gilt 𝐹[𝑥/𝑑].
▶ Wenn 𝐹 wahr ist, ist auch (𝐹 ∨ 𝐺) wahr (Einführung der Disjunktion).
▶ Also gilt für alle 𝑥: (𝐹 ∨ 𝐺).
▶ Also gilt ∀𝑥(𝐹 ∨ 𝐺).

In beiden Fällen folgt die Konklusion. �

Teil 5: Survival Guide

General Learning Principles

1. Intensity ≫ Duration
▶ Lerne nicht 10 Stunden “halbwach”. Lerne 4 Stunden mit voller Intensität.
▶ Deep Work: Handy weg, Fokus an. Qualität der Stunden schlägt Quantität.

2. Sleep is Part of the Job
▶ Schlaf ist keine Zeitverschwendung.
▶ Im Schlaf passiert Memory Consolidation. Wer nicht schläft, speichert nicht.

3. The Feynman Technique
▶ Erkläre das Konzept einem Freund, mach dir ein eigenes Cheatsheet (!).
▶ Wenn du stockst oder Fachbegriffe als “Black Box” benutzt, hast du eine Wissenslücke.

Exam Strategy: Think RL

1. Reinforcement Learning Loop
▶ Dein Gehirn lernt wie ein RL-Agent: Action → Feedback → Update.
▶ Löse Aufgaben und hole dir sofort Feedback (Lösung vergleichen).
▶ Ohne Feedback kein Lernen.

2. Quantity + Quality
▶ Quantity: Löse viele Aufgaben, um Mustererkennung (Pattern Matching) aufzubauen.
▶ Quality: Verstehe bei jeder Aufgabe das Warum. “Warum dieser Schritt?”

3. Simulation
▶ Löse alte Prüfungen unter Realbedingungen (Timer, keine Musik, nur erlaubte Hilfsmittel).

DM Specifics: The 80/20 Rule

Der High-Value-Cluster (Punktegaranten):
▶ ✓ Induktion
▶ ✓ Äquivalenz/POSETs
▶ ✓ Number Theory Restrechnungen
▶ ✓ Euclid+Inverse
▶ ✓ Resolution
▶ ✓ Definitionen Anwenden
▶ ✓ …

Fokussiere dich auf diese Basics, wenn du sicher bestehen willst.

One Last Thing…

ETH ist hart.
▶ Es ist normal, sich manchmal überfordert zu fühlen.
▶ Jeder kämpft hier – auch die, bei denen es “einfach” aussieht.
▶ Lass dich nicht von schlechten Tagen oder schwierigen Phasen entmutigen.

Danke, dass ihr dabei wart!
▶ Es hat mir unglaublich viel Spass gemacht, diese Übungsstunde zu halten.
▶ Falls ihr Fragen (Diskmat, zu den anderen Fächern, oder Generell) feel free to reach out :D

Viel Erfolg bei der Prüfung! Ihr schafft das.

	Teil 1: The Big Picture (TL;DR)
	Teil 2: Topic Buckets (Aufgaben nach Typ)
	Bucket A: Induktion & Beweise
	Bucket B: Relationen & Mengen
	Bucket C: Zahlentheorie
	Bucket D: Algebra
	Bucket E: Logik

	Teil 4: Hard(er) Mode
	Teil 5: Survival Guide

